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[Motivation]

DQL (dynamic quantum logic) is one of the fields of QL, and it

can express many important notions of quantum physics.

But there is a limit to what can be expressed in DQL.

Therefore, in this study, we will add the concepts of

measurement of physical quantities that is difficult to be

expressed in DQL, and show some theorems.
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1 Backgrounds

Quantum logic (QL) is the field which deal with

propositions about physical values of particle or about

states in quantum mechanics.

Ex: “In the current state, velocity of the particle is 20”.

A Hilbert space is used for state space of a particle in

quantum mechanics.



Example: 2D Hilbert space

・The state of the particle is represented by a one-dimensional

subspace passing through the origin.

・Each physical quantity is associated with one basis respectively,

and specific values of it are associated with each base.



Example: 2D Hilbert space

・The probability of obtaining a specific value depends on the

component of the state.

・If physical quantity M is measured in green state, we get 1 with 50%

and 2 with 50%. If N is measured in green state, we get 1 with 100%.



Projections by measurement Unitary evolutions

・Basically, there are two kinds of transition of particle

state in quantum physics.



2 Dynamic quantum logic

Quantum logic　(Orthomodular logic)

• Orthogonality

Dynamic quantum logic (A. Baltag and S. Smets. 2004 -)

• Orthogonality

• Projection

• Unitary transformation



Language of dynamic quantum logic

A denote formulas, and π denote actions

(same as dynamic logic).

A ::= p | ⊥ | ¬A | A∧B | [π]A | �A

π ::= U | π† | π ∪ π | π;π | A?

U : Atomic symbols for unitary transformation. {U, V, ...}

[π]A : A is always true after executing action π

Symbol † denote conjugate of a transformation.



Dynamic quantum frame ⟨X, { Y ?−−→}Y ⊆X , { U−→}U∈U ⟩

・X is a non-empty set.

・{ Y ?−−→}Y ⊆X is a set of binary relations Y ?(Y ⊆ X) on X

・{ U−→}U∈U is a set of binary relations U ′(U ′ ∈ {U, V, ...}) on X

Intuitively, X is a set of quantum states,

{ Y ?−−→}Y ⊆X and { U−→}U∈U represent projections and unitary

transformations.

Binary relation ̸⊥ on X. (Non-orthogonality)

x ̸⊥ y
def
= there exists Y ⊆ X such that x(Y ?)y or

y(Y ?)x.

We write x ⊥ y if not x ̸⊥ y.



Conditions for dynamic quantum frame

1. There is no x, y ∈ X such that x(ϕ?)y. For all x ∈ X, x(X?)x.
2. For all x, y, z ∈ X, if x(Y ?)y and x(Y ?)z, then y = z. (Partial

functionality of P?)
3. If x ∈ Y , then x(Y ?)x. (Adequacy)
4. For all x, y ∈ X, if Y ⊆ X is testable and x(Y ?)y, then y ∈ Y .

(Repeatability)
5. For all Y, Z ⊆ X, if Y and Z are testable and Y ?;Z? = Z?;Y ?, then

Y ?;Z? = (Y ∩ Z)?. (Compatibility)

6. Let (R) be (Y ?), (U) or (U†). If x(R)y and y ̸⊥ z, then there exists

w ∈ X such that z(R†)w and w ̸⊥ x. (Self-adjointness)
7. For all x ∈ X and U , ∃!y ∈ X such that x(U)y. (Functionality for U)

8. For all x ∈ X and U†, ∃!y ∈ X such that x(U†)y. (Functionality for U†)

9. For all x, y ∈ X, x(U)y iff y(U†)x. (Bijectivity)
10. For all x, y ∈ X, there exists z ∈ X such that x ̸⊥ z and z ̸⊥ y.

(Universal accessibility)



Dynamic quantum model ⟨X,→P?,→U , V ⟩
V is a function assigning each propositional variable p to a subset of

X. The truth of formulas (x |= A ⇔ x ∈ ∥A∥) are defined as follows:

∥p∥ = V (p)
∥⊥∥ = ϕ
∥A ∧ B∥ = ∥A∥ ∩ ∥B∥
∥¬A∥ = ∥A∥c

∥�A∥ = {x ∈ X| for all y ∈ X, if x ̸⊥ y, then y ∈ ∥A∥}
∥[A?]B∥ = {x ∈ X| for all y ∈ X, if x(Y ?)y, and Y = ∥A∥, then
y ∈ ∥B∥}
∥[U ]A∥ = {x ∈ X| for all y ∈ X, if x(U)y, then y ∈ ∥A∥}
∥[π1;π2]A∥ = ∥[π1][π2]A∥
∥[π1 ∪ π2]A∥ = ∥[π1]A∥ ∩ ∥[π2]A∥
∥[B?†]A∥ = ∥[B?]A∥
∥[U†]A∥ = {x ∈ X| for all y ∈ X, if x(U†)y, then y ∈ ∥A∥}
∥[(π1;π2)

†]A∥ = ∥[π†
2 ;π

†
1 ]A∥

∥[(π1 ∪ π2)
†]A∥ = ∥[π†

1 ∪ π†
2 ]A∥

∥[π††]∥A = ∥[π]A∥



Example

2D Hilbert space One of the corresponding models

(only some relations are written)



Example

2D Hilbert space One of the corresponding models

(only some relations are written)



PDQL (propositional dynamic quantum logic). Baltag, A., Smets, S.(2004-)

All the axioms and rules of classical dynamic logic
(Necessitation Rule): If A is provable, then infer [π]A
(Kripke Axiom): [π](A → B) → ([π]A → [π]B)
(Test Generalization): If A → [C?]B is provable for all C, then infer
A → �B
(Testability Axiom): �A → [B?]A
(Partial Functionality): ¬[A?]B → [A?]¬B
(Adequacy): A ∧ B → ⟨A?⟩B
(Repeatability): [A?]A for all testable formulas A
(Universal Accessibility): ⟨π⟩��A → [π′]A
(Unitary Functionality): ¬[U ]A ↔ [U ]¬A

(Unitary Bijectiviity 1): A ↔ [U ;U†]A

(Unitary Bijectiviity 2): A ↔ [U†;U ]A

(Adjointness): A → [π]�⟨π†⟩3A
(Substitution Rule): If A is provable, then infer A[p/B]
(Compatibility Rule): For all testable formulas A,B and every propositional
variable p which does not appears in A,B, if ⟨A?;B?⟩p → ⟨B?;A?⟩p is
provable, then infer ⟨A?;B?⟩p → ⟨(A ∧ B)?⟩p



Expressing closed subspaces

For Y ⊆ X,

Y ⊥ def
= {x ∈ X|for all y in Y , x⊥y}.

A set Y ⊆ X is is called testable set if Y ⊥⊥ = Y .

∼ A
def
= �¬A

T (A)
def
= ��(∼∼ A → A) (∥A∥ is testable)

Y ⊔ Z
def
= (Y ⊥ ∩ Z⊥)⊥

(Quantum disjunction)

expresses spanned space of Y and Z.



3 Modality for measurement
Let M be a physical quantity whose eigenvalues are not degenerate.

Propositions like

“After a measurement of M , (whatever the result), A is true”

are difficult to represented by dynamic quantum logic.

This proposition may be represented by

[(M = 1)? ∪ (M = 2)? ∪ (M = 3)? ∪ ...]A



Example: 3D Hilbert space

Modality [(M = 1)? ∪ (M = 2)? ∪ (M = 3)]



Problems

1. In a dynamic quantum frame, there is no definition of an

orthonormal basis.

2. If an orthonormal basis has infinite elements, the set of

formulas that represent bases {B1, B2, B3, ...} will be an

infinite set. However, infinite chain B1? ∪B2? ∪ ... is not

allowed.



Problems

1. In a dynamic quantum frame, there is no definition of an

orthonormal basis.

2. If an orthonormal basis has infinite elements, the set of

formulas that represent bases {B1, B2, B3, ...} will be an

infinite set. However, infinite chain B1? ∪B2? ∪ ... is not

allowed.

↓　Therefore, we add the definition for orthonormal basis

and some modal symbols.



A set Ob ⊆ P(X) is orthonormal basis of ⟨X,→P?,→U ⟩ if
Ob satisfies following conditions.

1. If S ∈ Ob, then S is testable.

(Testability of 1D-subspace)

2. If S ∈ Ob, and for all testable subset Y ⊆ X, if S ∩ Y ̸= ϕ, then

S ⊆ Y .

(Atomicity of bases)

3. If S ∈ Ob, T ∈ Ob and S ̸= T , then for all x ∈ S and y ∈ T , x⊥y.

(Orthogonality)

4.
⊔

Y ∈Ob

Y = X.

(Completeness of basis)



The set of propositional variables for orthonormal basis is

defined as follows.

Bp = {s, t, ...} ⊂ {p, q, ...} where both Bp and {p, q, ...} −Bp

are infinite sets.

New modal operator � is introduced and is regard as a

quantification of [s?](s ∈ Bp).

Intuitively, �A is corresponds to [s? ∪ t? ∪ ...]A.

∥�A∥ def
= {x ∈ X| for all y ∈ X and for all s ∈ Bp, if

x(s?)y, then y ∈ ∥A∥}



We say ⟨X,→P?,→U , Ob⟩ is a EDQ-frame if it satisfies

following conditions.

1. ⟨X,→P?,→U ⟩ is a dynamic quantum frame.

2. Ob is an orthonormal basis of ⟨X,→P?,→U ⟩.

We say ⟨X,→P?,→U , Ob, V ⟩ is a EDQ-model if it

satisfies following conditions.

1. ⟨X,→P?,→U , Ob⟩ is a EDQ-frame.

2. V is a function assigning each propositional variable p

(including s ∈ Bp) to a subset of X which satisfies

V (s) ∈ Ob.

3. For every Y ∈ Ob, there exists s ∈ Bp and V (s) = Y .



New logic PDQLB (PDQL with basis) is defined by adding the

following rules and axioms to PDQL.

Rules

If A is provable and p /∈ Bp, then infer A[p/B]

(Substitution Rule for PDQLB)

If A → [s?]B is provable for all s, then infer A → �B.

(Test Generalization for Bp)

Axioms

�A → [s?]A (Testability Axiom for Bp)

T (s) (Testability of Basis)

s ∧A ∧ T (A) → ��(s → A) (Atomicity of Basis)

s → t∨ ∼ t (Orthogonality of Basis)

¬�⊥ (Completeness of Orthonormal Basis)



Some important formulas for basis can be proved in PDQLB.

s ∧A → �A (Eigenstate)

�A → ��A (Repeatability of measurement)

A proof of �A → � � A.
1. s ∧ A → �A (s does not appears in A)
2. From necessitation rule, Kripke axiom and 1, [s?]s ∧ [s?]A → [s?] � A
3. From repeatability, testability of s and 2, [s?]A → [s?] � A
4. �A → [s?]A
5. From 3 and 4, �A → [s?] � A
6. As s does not appears in A, from test generalization for Bp and 5,

�A → � � A



Theorem 3.1 All axioms and rules of PDQLB is valid in

all EDQ-models.

Theorem 3.2（Complete axiomatization for orthonormal bases）
If all axioms and rules of PDQLB is valid in a T-complete

dynamic quantum model ⟨X,→P?,→U , V ⟩, then
{∥s∥|s ∈ Bp} is an orthonormal basis of ⟨X,→P?,→U ⟩.

T-complete: For all testable sets Y , there exists A such

that Y = ∥A∥.



Multiple physical quantities

Each (non-degenerate) physical quantity corresponds to an

orthonormal basis Ob. In a Hilbert space, another

orthonormal basis can be constructed by

unitary transformations from Ob.

Definitions of xU , YU and ObU .

If x(U)y, then y = xU

YU = {x ∈ X|∃y ∈ Y and y(U)x}
ObU = {YU ⊆ X|Y ∈ Ob}



Example: 2D Hilbert space



Theorem 3.3 If Ob is an orthonormal basis of dynamic

quantum frame ⟨X,→P?,→U ⟩, then ObU is also an

orthonormal basis of ⟨X,→P?,→U ⟩.

∥�U A∥ def
= {x ∈ X| for all s ∈ Bp, if x(([U†]s)?)y, then

y ∈ ∥A∥}



New logic PDQLBU (PDQLB with unitary

transformations) is defined by adding the following rules to

PDQLB.

(Test Generalization for U†(Bp)): If A → [([U†]s)?]B

is provable for all s, then infer A → �UB

(Testability Axiom for U†(Bp)): �UA → [([U†]s)?]A

(Testability of Basis): T ([U†]s)

(Atomicity of Basis):

[U†]s ∧A ∧ T (A) → ��([U†]s → A)

(Orthogonality of Basis): [U†]s → [U†]t∨ ∼ [U†]t

(Completeness of Orthonormal Basis): ¬�U ⊥



Theorem 3.4 All axiom and rules of PDQLBU is valid in

all EDQ-model.

Theorem 3.5（Complete axiomatization for orthonormal basis）
If all axioms of PDQLBU is valid in T-complete dynamic

quantum model ⟨X,→P?,→U , V ⟩, then {∥[U†]s∥|s ∈ Bp}
is an orthonormal basis of ⟨X,→P?,→U ⟩.



Mutually unbiased bases

Mutually unbiased bases Not mutually unbiased

Two orthonormal bases are mutually unbiased bases if each basis

equally contains all the component of the other orthogonal basis.

(An orthonormal basis for position and an orthonormal basis for

momentum are mutually unbiased bases in an infinite dimensional

Hilbert space).



However, degree of non-orthogonality cannot be expressed

by the framework of this study.

Orthonormal bases Ob and Ob′ are defined as

quasi-mutually unbiased bases of dynamic quantum

frame ⟨X,→P?,→U ⟩ if Ob and Ob′ satisfies following

conditions.

1. For all y ∈ Y ∈ Ob′ and Z ∈ Ob, there exists z ∈ Z

such that y ̸⊥z.

2. For all y ∈ Y ∈ Ob and Z ∈ Ob′, there exists z ∈ Z

such that y ̸⊥z.



Axioms for quasi-mutually unbiased bases

T (A) ∧ ¬�U ¬�A → ��A

T (A) ∧ ¬� ¬�U A → ��A



Theorem 3.6 In a EDQ-model ⟨X,→P?,→U , Ob, V ⟩, if
Ob and ObU are quasi-mutually unbiased bases of

⟨X,→P?,→U ⟩, then the axioms for quasi-mutually

unbiased bases of U are valid in ⟨X,→P?,→U , Ob, V ⟩.

Theorem 3.7 In a T-complete dynamic quantum model

⟨X,→P?,→U , V ⟩, if {∥s∥|s ∈ Bp} and {∥[U†]s∥|s ∈ Bp}
are orthonormal bases, and if axioms for quasi-mutually

unbiased bases of U are valid, then {∥s∥|s ∈ Bp} and

{∥[U†]s∥|s ∈ Bp} are quasi-mutually unbiased bases of

⟨X,→P?,→U ⟩.



Future works

・Degeneracy of physical quantities

M1 = {A1, A2, . . .}
M2 = {B1, B2, . . .}

The conditions for Mj are almost the same as Ob but Ai and

Bi do not necessarily satisfy atomicity.

Simultaneous observability [M1][M2]C ↔ [M2][M1]C ↔ �C

・Degree of orthogonality
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